Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Adv ; 9(12): eadd6734, 2023 03 22.
Article in English | MEDLINE | ID: covidwho-2287962

ABSTRACT

Immunoglobulin A (IgA) nephropathy (IgAN) is the most common type of primary glomerulonephritis, often progressing to renal failure. IgAN is triggered by IgA deposition in the glomerular mesangium by an undefined mechanism. Here, we show that grouped ddY (gddY) mice, a spontaneous IgAN model, produce serum IgA against mesangial antigens, including ßII-spectrin. Most patients with IgAN also have serum anti-ßII-spectrin IgA. As in patients with IgAN, IgA+ plasmablasts accumulate in the kidneys of gddY mice. IgA antibodies cloned from the plasmablasts carry substantial V-region mutations and bind to ßII-spectrin and the surface of mesangial cells. These IgAs recognize transfected and endogenous ßII-spectrin exposed on the surface of embryonic kidney-derived cells. Last, we demonstrate that the cloned IgA can bind selectively to glomerular mesangial regions in situ. The identification of IgA autoantibody and its antigen in IgAN provides key insights into disease onset and redefines IgAN as a tissue-specific autoimmune disease.


Subject(s)
Glomerulonephritis, IGA , Mice , Animals , Glomerulonephritis, IGA/genetics , Mesangial Cells/metabolism , Spectrin , Immunoglobulin A/metabolism , Autoantibodies
2.
J Cell Mol Med ; 26(4): 1144-1155, 2022 02.
Article in English | MEDLINE | ID: covidwho-1685345

ABSTRACT

High glucose (HG) is one of the basic factors of diabetic nephropathy (DN), which leads to high morbidity and disability. During DN, the expression of glomerular glucose transporter 1 (GLUT1) increases, but the relationship between HG and GLUT1 is unclear. Glomerular mesangial cells (GMCs) have multiple roles in HG-induced DN. Here, we report prominent glomerular dysfunction, especially GMC abnormalities, in DN mice, which is closely related to GLUT1 alteration. In vivo studies have shown that BBR can alleviate pathological changes and abnormal renal function indicators of DN mice. In vitro, BBR (30, 60 and 90 µmol/L) not only increased the proportion of G1 phase cells but also reduced the proportion of S phase cells under HG conditions at different times. BBR (60 µmol/L) significantly reduced the expression of PI3K-p85, p-Akt, p-AS160, membrane-bound GLUT1 and cyclin D1, but had almost no effect on total protein. Furthermore, BBR significantly declined the glucose uptake and retarded cyclin D1-mediated GMC cell cycle arrest in the G1 phase. This study demonstrated that BBR can inhibit the development of DN, which may be due to BBR inhibiting the PI3K/Akt/AS160/GLUT1 signalling pathway to regulate HG-induced abnormal GMC proliferation and the cell cycle, supporting BBR as a potential therapeutic drug for DN.


Subject(s)
Berberine , Diabetes Mellitus , Diabetic Nephropathies , Animals , Berberine/pharmacology , Cell Cycle , Cell Division , Cell Proliferation , Diabetes Mellitus/pathology , Diabetic Nephropathies/pathology , Glucose/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Mesangial Cells/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL